Scalable Subgraph Enumeration in MapReduce

نویسندگان

  • Longbin Lai
  • Lu Qin
  • Xuemin Lin
  • Lijun Chang
چکیده

Subgraph enumeration, which aims to find all the subgraphs of a large data graph that are isomorphic to a given pattern graph, is a fundamental graph problem with a wide range of applications. However, existing sequential algorithms for subgraph enumeration fall short in handling large graphs due to the involvement of computationally intensive subgraph isomorphism operations. Thus, some recent researches focus on solving the problem using MapReduce. Nevertheless, exiting MapReduce approaches are not scalable to handle very large graphs since they either produce a huge number of partial results or consume a large amount of memory. Motivated by this, in this paper, we propose a new algorithm TwinTwigJoin based on a left-deep-join framework in MapReduce, in which the basic join unit is a TwinTwig (an edge or two incident edges of a node). We show that in the Erdös-Rényi random-graph model, TwinTwigJoin is instance optimal in the left-deep-join framework under reasonable assumptions, and we devise an algorithm to compute the optimal join plan. Three optimization strategies are explored to improve our algorithm. Furthermore, we discuss how our approach can be adapted in the power-law random-graph model.We conduct extensive performance studies in several real graphs, one of which contains billions of edges. Our approach significantly outperforms existing solutions in all tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Distributed Subgraph Enumeration

Subgraph enumeration aims to find all the subgraphs of a large data graph that are isomorphic to a given pattern graph. As the subgraph isomorphism operation is computationally intensive, researchers have recently focused on solving this problem in distributed environments, such as MapReduce and Pregel. Among them, the state-of-the-art algorithm, TwinTwigJoin, is proven to be instance optimal b...

متن کامل

Network Motif Analysis in Clouds - Subgraph Enumeration with Iterative Hadoop MapReduce

Finding network motifs in biological networks is a computationally intensive task as it involves traversing through a large network to enumerate all possible subgraphs of a given size, and then determining their statistical uniqueness by sampling subgraphs from a large number (more than 1,000) of random graph pools. There have been parallelization efforts in the past to mitigate the computation...

متن کامل

Mining maximal cliques from a large graph using MapReduce: Tackling highly uneven subproblem sizes

We consider Maximal Clique Enumeration (MCE) from a large graph. A maximal clique is perhaps the most fundamental dense substructure in a graph, and MCE is an important tool to discover densely connected subgraphs, with numerous applications to data mining on web graphs, social networks, and biological networks. While effective sequential methods for MCE are known, scalable parallel methods for...

متن کامل

Keys for Graphs

Keys for graphs aim to uniquely identify entities represented by vertices in a graph. We propose a class of keys that are recursively defined in terms of graph patterns, and are interpreted with subgraph isomorphism. Extending conventional keys for relations and XML, these keys find applications in object identification, knowledge fusion and social network reconciliation. As an application, we ...

متن کامل

Densest Subgraph in Streaming and MapReduce

The problem of finding locally dense components of a graph is an important primitive in data analysis, with wide-ranging applications from community mining to spam detection and the discovery of biological network modules. In this paper we present new algorithms for finding the densest subgraph in the streaming model. For any > 0, our algorithms make O(log1+ n) passes over the input and find a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015